A Lepskiĭ-type stopping rule for the covariance estimation of multi-dimensional Lévy processes
Katerina Papagiannouli ()
Additional contact information
Katerina Papagiannouli: Humboldt Universität zu Berlin
Statistical Inference for Stochastic Processes, 2022, vol. 25, issue 3, No 5, 505-535
Abstract:
Abstract We suppose that a Lévy process is observed at discrete time points. Starting from an asymptotically minimax family of estimators for the continuous part of the Lévy Khinchine characteristics, i.e., the covariance, we derive a data-driven parameter choice for the frequency of estimating the covariance. We investigate a Lepskiĭ-type stopping rule for the adaptive procedure. Consequently, we use a balancing principle for the best possible data-driven parameter. The adaptive estimator achieves almost the optimal rate. Numerical experiments with the proposed selection rule are also presented.
Keywords: Multi-dimensional Lévy processes; Adaptive estimation; Lepskitype rule; Balancing principle; Statistical inference covariance (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11203-021-09264-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sistpr:v:25:y:2022:i:3:d:10.1007_s11203-021-09264-2
Ordering information: This journal article can be ordered from
http://www.springer. ... ty/journal/11203/PS2
DOI: 10.1007/s11203-021-09264-2
Access Statistics for this article
Statistical Inference for Stochastic Processes is currently edited by Denis Bosq, Yury A. Kutoyants and Marc Hallin
More articles in Statistical Inference for Stochastic Processes from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().