On minimax robust testing of composite hypotheses on Poisson process intensity
M. V. Burnashev ()
Additional contact information
M. V. Burnashev: Russian Academy of Sciences
Statistical Inference for Stochastic Processes, 2022, vol. 25, issue 3, No 1, 448 pages
Abstract:
Abstract The problem on the minimax testing of a Poisson process intensity is considered. For a given disjoint sets $${{\mathcal {S}}}_T$$ S T and $${{\mathcal {V}}}_T$$ V T of possible intensities $${{\mathbf {s}}}_{T}$$ s T and $${{\mathbf {v}}}_{T}$$ v T , respectively, the minimax testing of the composite hypothesis $$H_{0}: {{\mathbf {s}}_T} \in {{\mathcal {S}}}_T$$ H 0 : s T ∈ S T against the composite alternative $$H_{1}: {{\mathbf {v}}_T} \in {{\mathcal {V}}}_T$$ H 1 : v T ∈ V T is investigated. It is assumed that a pair of intensities $${{\mathbf {s}}_T^{0}} \in {{\mathcal {S}}}_T$$ s T 0 ∈ S T and $${{\mathbf {v}}_T^{0}} \in {{\mathcal {V}}}_T$$ v T 0 ∈ V T are chosen, and the “Likelihood-Ratio” test for intensities $${{\mathbf {s}}_T^{0}}$$ s T 0 and $${{\mathbf {v}}_T^{0}}$$ v T 0 is used for testing composite hypotheses $$H_{0}$$ H 0 and $$H_{1}$$ H 1 . The case, when the 1-st kind error probability $$\alpha $$ α is fixed and we are interested in the minimal possible 2-nd kind error probability $$\beta ({{\mathcal {S}}}_T,{{\mathcal {V}}}_T)$$ β ( S T , V T ) , is considered. What are the maximal sets $${{\mathcal {S}}}({{\mathbf {s}}}_{T}^{0},{{\mathbf {v}}}_{T}^{0})$$ S ( s T 0 , v T 0 ) and $${{\mathcal {V}}}({{\mathbf {s}}}_{T}^{0},{{\mathbf {v}}}_{T}^{0})$$ V ( s T 0 , v T 0 ) , which can be replaced by the pair of intensities $$({{\mathbf {s}}_T^{0}},{{\mathbf {v}}_T^{0}})$$ ( s T 0 , v T 0 ) without essential loss for testing performance ? In the asymptotic case ( $$T\rightarrow \infty $$ T → ∞ ) those maximal sets $${{\mathcal {S}}}({{\mathbf {s}}}_{T}^{0},{{\mathbf {v}}}_{T}^{0})$$ S ( s T 0 , v T 0 ) and $${{\mathcal {V}}}({{\mathbf {s}}}_{T}^{0},{{\mathbf {v}}}_{T}^{0})$$ V ( s T 0 , v T 0 ) are described.
Keywords: Poisson process intensity; Error probabilities; Minimax testing of hypotheses (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11203-021-09265-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sistpr:v:25:y:2022:i:3:d:10.1007_s11203-021-09265-1
Ordering information: This journal article can be ordered from
http://www.springer. ... ty/journal/11203/PS2
DOI: 10.1007/s11203-021-09265-1
Access Statistics for this article
Statistical Inference for Stochastic Processes is currently edited by Denis Bosq, Yury A. Kutoyants and Marc Hallin
More articles in Statistical Inference for Stochastic Processes from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().