Sparse estimation for generalized exponential marked Hawkes process
Masatoshi Goda ()
Additional contact information
Masatoshi Goda: University of Tokyo
Statistical Inference for Stochastic Processes, 2023, vol. 26, issue 1, No 5, 139-169
Abstract:
Abstract We established a sparse estimation method for the generalized exponential marked Hawkes process by the penalized method to ordinary method (P–O) estimator. Furthermore, we evaluated the probability of the correct variable selection. In the course of this, we established a framework for a likelihood analysis and the P–O estimation when there might be nuisance parameters, and the true value of the parameter might be at the boundary of the parameter space. Finally, numerical simulations are given for several important examples.
Keywords: Hawkes process; Sparse estimation; P–O estimator; Quasi-likelihood analysis; Statistical inference; Generalized exponential kernel (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11203-022-09274-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sistpr:v:26:y:2023:i:1:d:10.1007_s11203-022-09274-8
Ordering information: This journal article can be ordered from
http://www.springer. ... ty/journal/11203/PS2
DOI: 10.1007/s11203-022-09274-8
Access Statistics for this article
Statistical Inference for Stochastic Processes is currently edited by Denis Bosq, Yury A. Kutoyants and Marc Hallin
More articles in Statistical Inference for Stochastic Processes from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().