EconPapers    
Economics at your fingertips  
 

Integer-valued autoregressive models based on quasi Pólya thinning operator

Jean Peyhardi ()
Additional contact information
Jean Peyhardi: Univeristé de Montpellier, CNRS

Statistical Inference for Stochastic Processes, 2024, vol. 27, issue 3, No 9, 813-838

Abstract: Abstract Autoregressive models adapted to count time series have received less attention than their classical counterparts for continuous time series. The main approach is based on thinning stochastic operation that preserves the discrete nature of the variable between successive times. The binomial thinning operator is the most popular and the Poisson distribution emerges as the natural choice for the error distribution of such an autoregressive counting process. The present paper introduces the quasi Pólya thinning operator, that includes the binomial thinning operator as a special case. The family of additive modified power series distribution is defined and is shown to be the natural choice for the error distribution of such a counting process. We obtain the most general class of INAR(1) models with margins having analytic form and the property of closure under convolution introduced by Joe (1996). It includes the usual cases of Poisson and generalized Poisson margins, but also the less usual cases of binomial and negative binomial margins and the new case of generalized negative binomial margin. These models cover a high range of dispersion that are strictly ordered from the binomial case to the generalized negative binomial case. Asymptotic normality of the maximum likelihood estimator (MLE) for such INAR(1) models is obtained. Finally, the proposed INAR(1) models are applied on simulated and real datasets.

Keywords: Binomial thinning operator; Quasi Pólya distribution; INAR model; Modified power series distribution (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11203-024-09316-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sistpr:v:27:y:2024:i:3:d:10.1007_s11203-024-09316-3

Ordering information: This journal article can be ordered from
http://www.springer. ... ty/journal/11203/PS2

DOI: 10.1007/s11203-024-09316-3

Access Statistics for this article

Statistical Inference for Stochastic Processes is currently edited by Denis Bosq, Yury A. Kutoyants and Marc Hallin

More articles in Statistical Inference for Stochastic Processes from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:sistpr:v:27:y:2024:i:3:d:10.1007_s11203-024-09316-3