Systematic literature review of the performance characteristics of Chebyshev polynomials in machine learning applications for economic forecasting in low-income communities in sub-Saharan Africa
Darrold Cordes (),
Shahram Latifi and
Gregory M. Morrison
Additional contact information
Darrold Cordes: University of Nevada Las Vegas
Shahram Latifi: University of Nevada Las Vegas
Gregory M. Morrison: Curtin University
SN Business & Economics, 2022, vol. 2, issue 12, 1-33
Abstract:
Abstract Chebyshev polynomials have unique properties that place them in a class of functions that are highly efficient in the approximation of non-linear functions. Machine learning techniques are being applied to solve complex non-linear problems in the financial markets where there is a proliferation of financial products. The techniques for valuing diverse portfolios of these products can be time consuming and expensive. Formal research has been conducted to determine how machine learning can considerably reduce the computational effort without losing accuracy. The objective of this systematic literature review is to discover evidence of research on the optimal use of Chebyshev polynomials in machine learning and neural networks that may be used for the estimation of generalized financial outcomes of large clusters of small economic units in low-income communities in sub-Saharan Africa. Scopus, ProQuest, and Web of Science databases were queried with search criteria designed to recover peer-reviewed research articles that addressed this objective. Many articles discussing broader applications in engineering, computer science, and applied mathematics were found. Several articles provided insights into the challenges of forecasting stock price outcomes from unpredictable market activities, and in investment portfolio valuations. One article addressed specific environmental issues relating to energy, biology, and ecological situations, and presented encouraging results. While the literature search did not find any similar articles that address economic forecasting for low-income communities, the applications and techniques used in stock market forecasting and portfolio valuations can contribute to formative theory on sustainable development. There is currently no theoretical underpinning of sustainable development initiatives in developing countries. A framework for small business structures, data collection, and near real-time processing is proposed as a potential data-driven approach to guide policy decisions and private sector involvement.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s43546-022-00328-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:snbeco:v:2:y:2022:i:12:d:10.1007_s43546-022-00328-w
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/43546
DOI: 10.1007/s43546-022-00328-w
Access Statistics for this article
SN Business & Economics is currently edited by Gino D'Oca
More articles in SN Business & Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().