MIPLIBing: Seamless Benchmarking of Mathematical Optimization Problems and Metadata Extensions
Thiago Serra () and
Ryan J. O’Neil ()
Additional contact information
Thiago Serra: Bucknell University
Ryan J. O’Neil: nextmv
SN Operations Research Forum, 2020, vol. 1, issue 3, 1-6
Abstract:
Abstract Public libraries of problems such as Mixed Integer Programming Library (MIPLIB) are fundamental to creating a common benchmark for measuring algorithmic advances across mathematical optimization solvers. They also often provide metadata on problem structure, hardness with respect to state-of-the-art solvers, and solutions with the best objective function value on record. In this short paper, we discuss some ways in which such metadata can be leveraged to create a seamless testing experience. In particular, we present MIPLIBing: a Python library that automatically downloads queried subsets from the current versions of MIPLIB, MINLPLib, and QPLIB, provides a centralized local cache across projects, and tracks the best solution values and bounds on record for each problem. While inspired by similar use cases from other areas, we reflect on the specific needs of mathematical optimization and discuss opportunities to extend benchmark sets to facilitate experimentation with different model structures.
Keywords: Benchmarking; Mathematical optimization; Problem libraries (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s43069-020-00024-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:snopef:v:1:y:2020:i:3:d:10.1007_s43069-020-00024-1
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/43069
DOI: 10.1007/s43069-020-00024-1
Access Statistics for this article
SN Operations Research Forum is currently edited by Marco Lübbecke
More articles in SN Operations Research Forum from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().