Topological Data Analysis for Network Resilience Quantification
Luiz Manella Pereira,
Luis Caicedo Torres and
M. Hadi Amini ()
Additional contact information
Luiz Manella Pereira: Florida International University (FIU)
Luis Caicedo Torres: FIU
M. Hadi Amini: Florida International University (FIU)
SN Operations Research Forum, 2021, vol. 2, issue 2, 1-17
Abstract:
Abstract Developing accurate metrics to evaluate the resilience of large-scale networks, e.g., critical infrastructures, plays a pivotal role in secure operation of these networks. In this paper, we propose a novel framework to study the resilience of a network. To this end, we leverage the tools from Topological Data Analysis (TDA) and Persistent Homology (PH). The combined deployment of TDA and PH tools provides us with a solid understanding of network topology only based on the underlying weighted graph and comparing it with the base network, e.g., fully connected network as the most resilient structure. By utilizing an abstract network to build our arguments and results, we present a step-by-step method to leverage the fundamental theories of TDA to study and improve a network’s resilience. By creating a weighted graph, where weights represent a meaningful attribute to the underlying network, we utilize Vietori–Rips complex and filtration to create persistent diagrams. This allows us to extract topological information to study network resilience. Further, we show how the use of Wasserstein distances can provide detailed information about the critical edges (e.g., roads in transportation networks, or power distribution lines in power networks) in the network, and how adding or removing certain edges affect the level of resilience of the network by presenting a novel metric to quantify the resilience of a network. We evaluate the effectiveness of the proposed method using a case study that compares a base network with networks that include different edges using our resilience metric.
Keywords: Network resilience; Topological data analysis; Wasserstein distance; Algebraic topology; Persistent homology (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s43069-021-00070-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:snopef:v:2:y:2021:i:2:d:10.1007_s43069-021-00070-3
Ordering information: This journal article can be ordered from
https://www.springer.com/journal/43069
DOI: 10.1007/s43069-021-00070-3
Access Statistics for this article
SN Operations Research Forum is currently edited by Marco Lübbecke
More articles in SN Operations Research Forum from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().