EconPapers    
Economics at your fingertips  
 

Iterative Methods for Solving Sylvester Transpose Tensor Equation $$~\mathcal A\star _N\mathcal X\star _M\mathcal {B}+\mathcal {C}\star _M\mathcal X^T\star _N\mathcal {D}=\mathcal {E}$$ A ⋆ N X ⋆ M B + C ⋆ M X T ⋆ N D = E

Eisa Khosravi Dehdezi
Additional contact information
Eisa Khosravi Dehdezi: Persian Gulf University

SN Operations Research Forum, 2021, vol. 2, issue 4, 1-21

Abstract: Abstract In recent years, solving tensor equations has attracted the attention of mathematicians in applied mathematics. This paper investigated the gradient-based and gradient-based least-squares iterative algorithms to solve the Sylvester transpose tensor equation $$\mathcal A\star _N\mathcal X\star _M\mathcal {B}+\mathcal {C}\star _M\mathcal X^T\star _N\mathcal {D}=\mathcal {E}$$ A ⋆ N X ⋆ M B + C ⋆ M X T ⋆ N D = E . These algorithms use tensor computations with no matricizations involved which includes the Sylvester transpose matrix equation as special case. The first algorithm is applied when the tensor equation is consistent. Error convergence analysis of the proposed methods has been discussed. For inconsistent Sylvester transpose tensor equation, the gradient-based least-squares iterative method is presented. Modified versions of these algorithms are obtained by little changes. Also, it is showed that for any initial tensor, a solution of related problems can be obtained within finite iteration steps in the absence of round-off errors. In addition, the computational cost of the methods is obtained. The effectiveness of these procedures are illustrated by several numerical examples. Finally, some concluding remarks are given.

Keywords: Tensor; Einstein product; Gradient based; Iterative methods (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s43069-021-00107-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:snopef:v:2:y:2021:i:4:d:10.1007_s43069-021-00107-7

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/43069

DOI: 10.1007/s43069-021-00107-7

Access Statistics for this article

SN Operations Research Forum is currently edited by Marco Lübbecke

More articles in SN Operations Research Forum from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:snopef:v:2:y:2021:i:4:d:10.1007_s43069-021-00107-7