EconPapers    
Economics at your fingertips  
 

Optimizing Structure and Internal Unit Weights of Echo State Network for an Efficient LMS-Based Online Training

Javad Saadat (), Mohsen Farshad () and Hussein Eliasi ()
Additional contact information
Javad Saadat: University of Birjand
Mohsen Farshad: University of Birjand
Hussein Eliasi: University of Birjand

SN Operations Research Forum, 2023, vol. 4, issue 1, 1-14

Abstract: Abstract Echo state network (ESN) is a special type of recurrent neural networks (RNN) wherein a dynamic reservoir is used in the hidden layer, the weight of internal units of ESN is kept fix during training process, and output weights are the only trainable weights. Therefore, network training in an offline mode can be changed into a linear regression equation which is simply solved, although it is required to use online training of ESN in some applied problems. The least mean square (LMS) algorithm can provide an easy and constant method for online training of ESN; however, the huge eigenvalue spreads of the correlation matrix of internal network states reduce the speed of the algorithm convergence. In this study, harmony search algorithm (HSA) is used to optimally produce the structure and weight of internal network units. It is possible to significantly reduce the eigenvalue spreads of the correlation matrix of network states by means of this algorithm. Thereafter, the LMS algorithm is used for the online training of ESN built with the help of HSA. Already-obtained simulation results show that the eigenvalue spreads of the correlation matrix are reduced millions of times, and the LMS algorithm increases the online training speed of the network several times with an acceptable precision of training.

Keywords: Echo state network; Least mean square algorithm; Harmony search algorithm; Prediction and chaotic time series (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s43069-023-00196-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:snopef:v:4:y:2023:i:1:d:10.1007_s43069-023-00196-6

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/43069

DOI: 10.1007/s43069-023-00196-6

Access Statistics for this article

SN Operations Research Forum is currently edited by Marco Lübbecke

More articles in SN Operations Research Forum from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:snopef:v:4:y:2023:i:1:d:10.1007_s43069-023-00196-6