EconPapers    
Economics at your fingertips  
 

An Empirical Framework Using Weighted Feed Forward Neural Network for Supply Chain Resilience (SCR) Strategy Selection

Manikandan Rajagopal () and Ramkumar Sivasakthivel ()
Additional contact information
Manikandan Rajagopal: CHRIST (Deemed to be University)
Ramkumar Sivasakthivel: CHRIST (Deemed to be University)

SN Operations Research Forum, 2024, vol. 5, issue 2, 1-19

Abstract: Abstract Artificial intelligence (AI)-based systems are normally data driven applications, where the model is trained to think on its own based on the external circumstances. The power of AI has reached every facet of business and common life and is even being largely explored to be adopted in life sciences and medical domains. It supports the human in decision-making through the cognitive utilities which arises out of self-learning capabilities of a model. With the exponential growth of data, supply chain management and analytics have attracted a large community of researchers to build intelligent systems which can lead to re-invention of data-driven decision systems powered by AI. Systems and literature of the past shows that AI-based technologies are promising in intelligent supply chain management (SCM) and building resilient SCMs. There is a gap in literature which addresses on the framework for decision support systems in SCM and application of AI methods for building a robust supply chain resilience (SCR) leading to more exploration on the topic. In this paper, a decision framework is proposed by incorporating fuzzy logic and recurrent neural networks (RNN) for disclosing the patterns of various AI-enabled techniques for SCRs. The proposed analysis involved data from leading literatures to determine the most adoptable and significant applications of AI in SCRs. The analysis shows that techniques such as fuzzy programing, network based algorithms, and genetic algorithms have large impact on building SCRs. The results help in decision-making by exhibiting an integrated framework which can help the AI practitioners for developing SCRs.

Keywords: Artificial Intelligence (AI); Supply Chain Management (SCM); Supply Chain Resilience (SCR); Fuzzy Programming and Multi-Level Decision Support (MLDS) framework (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s43069-024-00313-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:snopef:v:5:y:2024:i:2:d:10.1007_s43069-024-00313-z

Ordering information: This journal article can be ordered from
https://www.springer.com/journal/43069

DOI: 10.1007/s43069-024-00313-z

Access Statistics for this article

SN Operations Research Forum is currently edited by Marco Lübbecke

More articles in SN Operations Research Forum from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:snopef:v:5:y:2024:i:2:d:10.1007_s43069-024-00313-z