EconPapers    
Economics at your fingertips  
 

Prediction of Human Development from Environmental Indicators

Salvador Boccaletti Ramos (), José Paula Silva (), Cláudia Alexandra Bolela () and Mônica Andrade ()
Additional contact information
Salvador Boccaletti Ramos: Universidade de Franca (UNIFRAN)
José Paula Silva: Universidade do Estado de Minas Gerais (UEMG)
Cláudia Alexandra Bolela: Universidade de Franca (UNIFRAN)
Mônica Andrade: Universidade de Franca (UNIFRAN)

Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, 2018, vol. 138, issue 2, No 3, 467-477

Abstract: Abstract The Sustainable Development Goals (SDG) list the objectives and targets that should be addressed to solve the global issues regarding sustainable development. They encompass the social, economic and environmental dimensions and search for solutions that are able not only to monitor but also to control the operational indicators attributed to each objective. It is expected that many of these indicators are associated to each other and the accurate understanding of these correlations allows to build predictive statistical models that can improve the monitoring and controlling of variables. It would increase the rate of success in achieving the SDG. This study tested a linear multivariate model able to predict the human development index based on environmental variables which are related to SDG 3 (health), 4 (education), 8 (sustainable economic growth and decent work) and 15 (protect, restore and promote sustainable use of terrestrial ecosystems). We fitted the models using the Linear Discriminant Analysis and Best Subset Selection applied to a Linear Multivariate Regression. The model predictive ability was assessed by R2 and cross-validation (CV). The results showed that exposure to unsafe sanitation, access to drinking water, tree cover loss, unsafe water quality, wastewater treatment level, and household air pollution are excellent predictors of human development index of a population, with R2 = 0.94 and 10-fold CV Mean Squared Error equal to 0.0014. This tool can help stakeholders to monitor and control indicators attributed to good health and well-being, quality education, clean water and sanitation, decent work and economic growth, sustainable cities and communities and life on land sustainable development goals.

Keywords: Environmental Performance Index; Human development index; Linear Discriminant Analysis; Machine learning; Cross-validation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11205-017-1693-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:soinre:v:138:y:2018:i:2:d:10.1007_s11205-017-1693-2

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11135

DOI: 10.1007/s11205-017-1693-2

Access Statistics for this article

Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement is currently edited by Filomena Maggino

More articles in Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:soinre:v:138:y:2018:i:2:d:10.1007_s11205-017-1693-2