EconPapers    
Economics at your fingertips  
 

Detection of Differentially Methylated Regions Using Bayesian Curve Credible Bands

Jincheol Park and Shili Lin ()
Additional contact information
Jincheol Park: Keimyung University
Shili Lin: The Ohio State University

Statistics in Biosciences, 2018, vol. 10, issue 1, No 3, 20-40

Abstract: Abstract DNA methylation is one of the most crucial epigenetic modifications involved in regulating gene transcription, cellular differentiation, development, and disease. In recent years, aided by fast parallel sequencing technology, a number of genome-wide bisulfite sequencing platforms have been developed to provide high-throughput DNA methylation data. These are essentially short reads that can be classified as methylated or unmethylated for a particular CpG site. Numerous sophisticated statistical methods have been developed to analyze such a massive amount of correlated data, but they are mainly for detecting differentially methylated loci (DMLs). To detect differentially methylated regions (DMRs), which are often more relevant biologically, a post-processing step from the identified DMLs is needed. In this paper, we address this shortcoming and other issues by proposing a latent variable Bayesian smoothing Curve (BCurve) method for detecting DMRs directly by means of constructing Bayesian credible intervals and bands. In addition to direct detection of DMRs, BCurve differs from existing methods in several other aspects, including its ability to accommodate between-sample variability, taking correlation of methylation levels among nearby loci into account when detecting DMRs, and the construction of credible bands (not just point estimates). We carried out an extensive simulation study to evaluate the performance of BCurve and to compare it with an existing method, BSmooth. The results show that BCurve outperforms BSmooth in all scenarios considered. Finally, we applied BCurve to a dataset to illustrate its utility in real data applications.

Keywords: Bisulfite sequencing; Credible intervals and bands; Cubic splines; Differentially methylated loci; Differentially methylated regions; DNA methylation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s12561-016-9171-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:10:y:2018:i:1:d:10.1007_s12561-016-9171-y

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561

DOI: 10.1007/s12561-016-9171-y

Access Statistics for this article

Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin

More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stabio:v:10:y:2018:i:1:d:10.1007_s12561-016-9171-y