EconPapers    
Economics at your fingertips  
 

Base-Calling Using a Random Effects Mixture Model on Next-Generation Sequencing Data

Ashley Cacho, Weixin Yao and Xinping Cui ()
Additional contact information
Ashley Cacho: University of California Riverside
Weixin Yao: University of California Riverside
Xinping Cui: University of California Riverside

Statistics in Biosciences, 2018, vol. 10, issue 1, No 2, 3-19

Abstract: Abstract The emergence of next-generation sequencing technology has greatly influenced research in biology and clinical applications. This new technology allows millions of DNA fragments to be sequenced in parallel, reducing costs and increasing throughput. One of the most widely used DNA sequencing machines is the Illumina platform which contains a novel sequencing-by-synthesis method involving a series of chemical reactions and image processing. However, it suffers from biases inherent with the complex nature of the chemical processes involved. The process of converting the fluorescence intensity output of the sequencing-by-synthesis technology to the nucleotide bases is what is known as base-calling. The resulting DNA sequences are used in further downstream analyses such as in genome assemblies or variant detection in which the accuracy and quality of bases impact the results. In this paper, we introduce a random effects mixture model that captures the sequencing process and compare its performance to a model with fixed effects.

Keywords: Base-calling; Illumina; Random effects; MCEM; DNA sequencing (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s12561-017-9190-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:10:y:2018:i:1:d:10.1007_s12561-017-9190-3

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561

DOI: 10.1007/s12561-017-9190-3

Access Statistics for this article

Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin

More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stabio:v:10:y:2018:i:1:d:10.1007_s12561-017-9190-3