Optimal Benchmark for Evaluating Drug-Combination Dose-Finding Clinical Trials
Beibei Guo () and
Suyu Liu
Additional contact information
Beibei Guo: Louisiana State University
Suyu Liu: The University of Texas MD Anderson Cancer Center
Statistics in Biosciences, 2018, vol. 10, issue 1, No 11, 184-201
Abstract:
Abstract Numerous dose-finding methods have been proposed for drug-combination trials. A head-to-head comparison of the performance of these designs is difficult and often not very meaningful because different designs use different models and decision rules that often require judicious calibration to obtain good small-sample performance. It is desirable to have a general benchmark that can be used to evaluate the absolute performance of combination dose-finding designs. In this article, we propose an optimal nonparametric benchmark for evaluating drug-combination dose-finding methods, which provides an upper bound of accuracy beyond which further improvements are generally not achievable without making parametric assumptions of the dose-toxicity relationship. Our method is based on a new concept called critical information, which provides an upper bound on the information that we could possibly learn from patients while explicitly accounting for the partial order of the dose combinations, a fundamental feature of drug-combination trials. Our numerical study shows that the proposed benchmark provides a sharp upper bound that is useful for evaluating the performance of combination dose-finding designs.
Keywords: Combination trials; Dose finding; Partial order; Optimal benchmark; Upper limit (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12561-017-9204-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:10:y:2018:i:1:d:10.1007_s12561-017-9204-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-017-9204-1
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().