EconPapers    
Economics at your fingertips  
 

Population-Enrichment Adaptive Design Strategy for an Event-Driven Vaccine Efficacy Trial

Shu-Chih Su (), Xiaoming Li, Yanli Zhao and Ivan S. F. Chan
Additional contact information
Shu-Chih Su: Merck Research Laboratories
Xiaoming Li: Atara Biotherapeutics, Inc.
Yanli Zhao: Clinical Biostatistics, MedImmune/Astrazeneca
Ivan S. F. Chan: AbbVie

Statistics in Biosciences, 2018, vol. 10, issue 2, No 6, 357-370

Abstract: Abstract A population-enrichment adaptive design allows a prospective use for study population selection. It has the flexibility allowing pre-specified modifications to an ongoing trial to mitigate the potential risk associated with the assumptions made at design stage. In this way, the trial can potentially encompass a broader target patient population, and move forward only with the subpopulations that appear to be benefiting from the treatment. Our work is motivated by a Phase III event-driven vaccine efficacy trial. Two target patient subpopulations were enrolled with the assumption that vaccine efficacy can be demonstrated based on the combined population. It is recognized due to the nature of patients’ underlying conditions, one subpopulation might respond to the treatment better than the other. To maximize the probability of demonstrating vaccine efficacy in at least one patient population while taking advantage of combining two subpopulations in one single trial, an adaptive design strategy with potential population enrichment is developed. Specifically, if the observed vaccine efficacy at interim for one subpopulation is not promising to warrant carrying forward, the population may be enriched with the other subpopulation with better performance. Simulations were conducted to evaluate the operational characteristics from a selection of interim analysis plans. This population-enrichment design provides a more efficient way as compared to the conventional approaches when targeting multiple subpopulations. If executed and planned with caution, this strategy can provide a greater chance of success of the trial and help maintain scientific and regulatory rigors.

Keywords: Adaptive design; Vaccine efficacy; Population enrichment; Event-driven (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s12561-017-9202-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:10:y:2018:i:2:d:10.1007_s12561-017-9202-3

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561

DOI: 10.1007/s12561-017-9202-3

Access Statistics for this article

Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin

More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stabio:v:10:y:2018:i:2:d:10.1007_s12561-017-9202-3