Robust Rare-Variant Association Tests for Quantitative Traits in General Pedigrees
Yunxuan Jiang,
Karen N. Conneely and
Michael P. Epstein ()
Additional contact information
Yunxuan Jiang: Emory University
Karen N. Conneely: Emory University
Michael P. Epstein: Emory University
Statistics in Biosciences, 2018, vol. 10, issue 3, No 1, 505 pages
Abstract:
Abstract Next-generation sequencing technology has propelled the development of statistical methods to identify rare polygenetic variation associated with complex traits. The majority of these statistical methods are designed for case–control or population-based studies, with few methods that are applicable to family-based studies. Moreover, existing methods for family-based studies mainly focus on trios or nuclear families; there are far fewer existing methods available for analyzing larger pedigrees of arbitrary size and structure. To fill this gap, we propose a method for rare-variant analysis in large pedigree studies that can utilize information from all available relatives. Our approach is based on a kernel machine regression (KMR) framework, which has the advantages of high power, as well as fast and easy calculation of p-values using the asymptotic distribution. Our method is also robust to population stratification due to integration of a QTDT framework (Abecasis et al., Eur J Hum Genet 8(7):545–551, 2000b) with the KMR framework. In our method, we first calculate the expected genotype (between-family component) of a non-founder using all founders’ information and then calculate the deviates (within-family component) of observed genotype from the expectation, where the deviates are robust to population stratification by design. The test statistic, which is constructed using within-family component, is thus robust to population stratification. We illustrate and evaluate our method using simulated data and sequence data from Genetic Analysis Workshop 18.
Keywords: Rare variant; Pedigree; Quantitative trait; Population stratification (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12561-017-9197-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:10:y:2018:i:3:d:10.1007_s12561-017-9197-9
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-017-9197-9
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().