A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes
Miran A. Jaffa () and
Ayad A. Jaffa
Additional contact information
Miran A. Jaffa: American University of Beirut
Ayad A. Jaffa: American University of Beirut
Statistics in Biosciences, 2019, vol. 11, issue 3, No 6, 597-613
Abstract:
Abstract Longitudinal studies with binary outcomes characterized by informative right censoring are commonly encountered in clinical, basic, behavioral, and health sciences. Approaches developed to analyze data with binary outcomes were mainly tailored to clustered or longitudinal data with missing completely at random or at random. Studies that focused on informative right censoring with binary outcomes are characterized by their imbedded computational complexity and difficulty of implementation. Here we present a new maximum likelihood-based approach with repeated binary measures modeled in a generalized linear mixed model as a function of time and other covariates. The longitudinal binary outcome and the censoring process determined by the number of times a subject is observed share latent random variables (random intercept and slope) where these subject-specific random effects are common to both models. A simulation study and sensitivity analysis were conducted to test the model under different assumptions and censoring settings. Our results showed accuracy of the estimates generated under this model when censoring was fully informative or partially informative with dependence on the slopes. A successful implementation was undertaken on a cohort of renal transplant patients with blood urea nitrogen as a binary outcome measured over time to indicate normal and abnormal kidney function until the emanation of graft rejection that eventuated in informative right censoring. In addition to its novelty and accuracy, an additional key feature and advantage of the proposed model is its viability of implementation on available analytical tools and widespread application on any other longitudinal dataset with informative censoring.
Keywords: Longitudinal binary outcome; Generalized linear mixed models; Informative right censoring; Likelihood-based estimation; Logit mixed model; Shared latent parameter models (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12561-019-09254-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:11:y:2019:i:3:d:10.1007_s12561-019-09254-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-019-09254-2
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().