On the Use of Marker Strategy Design to Detect Predictive Marker Effect in Cancer Immunotherapy and Targeted Therapy
Yan Han,
Ying Yuan,
Sha Cao,
Muyi Li and
Yong Zang ()
Additional contact information
Yan Han: Indiana University
Ying Yuan: The University of Texas MD Anderson Cancer Center
Sha Cao: Indiana University
Muyi Li: The Wang Yanan Institute for Studies in Economics (WISE)
Yong Zang: Indiana University
Statistics in Biosciences, 2020, vol. 12, issue 2, No 7, 180-195
Abstract:
Abstract The marker strategy design (MSGD) has been proposed to assess and validate predictive markers for targeted therapies and immunotherapies. Under this design, patients are randomized into two strategies: the marker-based strategy, which treats patients based on their marker status, and the non-marker-based strategy, which randomizes patients into treatments independent of their marker status in the same way as in a standard randomized clinical trial. The strategy effect is then tested by comparing the response rate between the two strategies and this strategy effect is commonly used to evaluate the predictive capability of the markers. We show that this commonly used between-strategy test is flawed, which may cause investigators to miss the opportunity to discover important predictive markers or falsely claim an irrelevant marker as predictive. Then, we propose new procedures to improve the power of the MSGD to detect the predictive marker effect. One is based on a binary response endpoint; the second is based on survival endpoints. We conduct simulation studies to compare the performance of the MSGD with the widely used marker-stratified design (MSFD). Numerical studies show that the MSGD and MSFD has comparable performance. Hence, contrary to popular belief that the MSGD is an inferior design compared with the MSFD, we conclude that using the MSGD with the proposed tests is an efficient and ethical way to find predictive markers for targeted therapies.
Keywords: Immunotherapy; Clinical trial; Biomarker; Personalized medicine (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12561-019-09255-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:12:y:2020:i:2:d:10.1007_s12561-019-09255-1
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-019-09255-1
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().