A Curve-Free Bayesian Decision-Theoretic Design for Phase Ia/Ib Trials Considering Both Safety and Efficacy Outcomes
Shenghua Fan,
Bee Leng Lee and
Ying Lu ()
Additional contact information
Shenghua Fan: California State University
Bee Leng Lee: San Jose State University
Ying Lu: Stanford University
Statistics in Biosciences, 2020, vol. 12, issue 2, No 5, 146-166
Abstract:
Abstract A curve-free, Bayesian decision-theoretic two-stage design is proposed to select biological efficacious doses (BEDs) for phase Ia/Ib trials in which both toxicity and efficacy signals are observed. No parametric models are assumed to govern the dose–toxicity, dose–efficacy, and toxicity–efficacy relationships. We assume that the dose–toxicity curve is monotonic non-decreasing and the dose–efficacy curve is unimodal. In the phase Ia stage, a Bayesian model on the toxicity rates is used to locate the maximum tolerated dose. In the phase Ib stage, we model the dose–efficacy curve using a step function while continuing to monitor the toxicity rates. Furthermore, a measure of the goodness of fit of a candidate step function is proposed, and the interval of BEDs associated with the best fitting step function is recommended. At the end of phase Ib, if some doses are recommended as BEDs, a cohort of confirmation is recruited and assigned at these doses to improve the precision of estimates at these doses. Extensive simulation studies show that the proposed design has desirable operating characteristics across different shapes of the underlying true toxicity and efficacy curves.
Keywords: Bayesian adaptive design; Biological efficacious doses; Efficacy signals; Phase I trials; Toxicity outcomes (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s12561-020-09272-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:12:y:2020:i:2:d:10.1007_s12561-020-09272-5
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-020-09272-5
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().