On a Shape-Invariant Hazard Regression Model with application to an HIV Prevention Study of Mother-to-Child Transmission
Cheng Zheng () and
Ying Qing Chen
Additional contact information
Cheng Zheng: University of Wisconsin-Milwaukee
Ying Qing Chen: Fred Hutchinson Cancer Research Center
Statistics in Biosciences, 2020, vol. 12, issue 3, No 6, 340-352
Abstract:
Abstract In survival analysis, Cox model is widely used for most clinical trial data. Alternatives include the additive hazard model, the accelerated failure time (AFT) model and a more general transformation model. All these models assume that the effects for all covariates are on the same scale. However, it is possible that for different covariates, the effects are on different scales. In this paper, we propose a shape-invariant hazard regression model that allows us to estimate the multiplicative treatment effect with adjustment of covariates that have non-multiplicative effects. We propose moment-based inference procedures for the regression parameters. We also discuss the risk prediction and the goodness of fit test for our proposed model. Numerical studies show good finite sample performance of our proposed estimator. We applied our method to the HIVNET 012 study, a milestone trial of single-dose nevirapine in prevention of mother-to-child transmission of HIV. From the HIVNET 012 data analysis, single-dose nevirapine treatment is shown to improve 18-month infant survival significantly with appropriate adjustment of the maternal CD4 counts and the virus load.
Keywords: Censoring; Counting processes; Semiparametric methods; Time-to-event analysis; 62N01; 62N02; 62P10 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12561-019-09260-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:12:y:2020:i:3:d:10.1007_s12561-019-09260-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-019-09260-4
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().