Comparison of HIV Prevalence Among Antenatal Clinic Attendees Estimated from Routine Testing and Unlinked Anonymous Testing
Ben Sheng (),
Jeffrey W. Eaton (),
Mary Mahy () and
Le Bao ()
Additional contact information
Ben Sheng: Pennsylvania State University
Jeffrey W. Eaton: Imperial College London
Mary Mahy: UNAIDS
Le Bao: Pennsylvania State University
Statistics in Biosciences, 2020, vol. 12, issue 3, No 3, 279-294
Abstract:
Abstract In 2015, WHO and UNAIDS released new guidance recommending that countries transition from conducting antenatal clinic (ANC) unlinked anonymous testing (ANC-UAT) for tracking HIV prevalence trends among pregnant women to using ANC routine testing (ANC-RT) data, which are more consistent and economic to collect. This transition could pose challenges for distinguishing whether changes in observed prevalence are due to a change in underlying population prevalence or due to a change in the testing approach. We compared the HIV prevalence measured from ANC-UAT and ANC-RT in 15 countries that had both data sources in overlapping years. We used linear mixed-effects model (LMM) to estimate the RT-to-UAT calibration parameter as well as other unobserved quantities. We summarized the results at different levels of aggregation (e.g., country, urban, rural, and province). Based on our analysis, the HIV prevalence measured by ANC-UAT and ANC-RT data are consistent in most countries. Therefore, if large discrepancy is observed between ANC-UAT and ANC-RT at the same location, we recommend that people should be cautious and investigate the reason. For countries that lack information to estimate the calibration parameter, we propose an informative prior distribution of mean 0 and standard deviation 0.2 for the RT-to-UAT calibration parameter.
Keywords: Antenatal clinic; HIV prevalence; Unlinked anonymous HIV testing; Routine HIV testing; Calibration parameter; Linear mixed-effects model (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s12561-020-09265-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:12:y:2020:i:3:d:10.1007_s12561-020-09265-4
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-020-09265-4
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().