A Weighted Sample Framework to Incorporate External Calculators for Risk Modeling
Debashis Ghosh () and
Michael S. Sabel ()
Additional contact information
Debashis Ghosh: Colorado School of Public Health
Michael S. Sabel: University of Michigan Health Systems
Statistics in Biosciences, 2022, vol. 14, issue 3, No 1, 363-379
Abstract:
Abstract Personalized risk prediction calculators abound in medicine, and they carry important information about the effect of prognostic factors on outcomes of interest. How to use that information in order to analyze local datasets is a pressing question, and several recent proposals have attempted to pool information from external calculators to local datasets using parameter sharing approaches. Here, we adopt a weighting approach using convex optimization in order to transfer information. Rather than directly modeling parameters, we instead pool information on a per-sample basis. In particular, we develop prediction-guided analyses, along with an attendant inferential strategy, for incorporating information from the external risk calculator. We also supplement this analytical approach with an exploratory technique using trees to describe what we term as ‘calculator-guided observations.’ In addition, the optimization problem itself can yield insights on the potential transferability of the external calculator to the local dataset. The methodology is illustrated by simulation studies as well as an application of risk calculators to the prediction of sentinel lymph node positivity in melanoma.
Keywords: Biomarkers; Constrained regression; Discrimination; External information; Generalizability; Penalized regression (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12561-021-09325-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:14:y:2022:i:3:d:10.1007_s12561-021-09325-3
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-021-09325-3
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().