EconPapers    
Economics at your fingertips  
 

A Generalized Interrupted Time Series Model for Assessing Complex Health Care Interventions

Maricela Cruz (), Hernando Ombao and Daniel L. Gillen
Additional contact information
Maricela Cruz: Kaiser Permanente Washington Health Research Institute
Hernando Ombao: King Abdullah University of Science and Technology
Daniel L. Gillen: University of California Irvine

Statistics in Biosciences, 2022, vol. 14, issue 3, No 11, 582-610

Abstract: Abstract Assessing the impact of complex interventions on measurable health outcomes is a growing concern in health care and health policy. Interrupted time series (ITS) designs borrow from traditional case-crossover designs and function as quasi-experimental methodology able to retrospectively analyze the impact of an intervention. Statistical models used to analyze ITS designs primarily focus on continuous-valued outcomes. We propose the “Generalized Robust ITS" (GRITS) model appropriate for outcomes whose underlying distribution belongs to the exponential family of distributions, thereby expanding the available methodology to adequately model binary and count responses. GRITS formally implements a test for the existence of a change point in discrete ITS. The methodology proposed is able to test for the existence of and estimate the change point, borrow information across units in multi-unit settings, and test for differences in the mean function and correlation pre- and post-intervention. The methodology is illustrated by analyzing patient falls from a hospital that implemented and evaluated a new care delivery model in multiple units.

Keywords: Change point detection; Complex interventions; Discrete outcomes; Interrupted time series; Patient-centered data; Segmented regression (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s12561-022-09346-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:14:y:2022:i:3:d:10.1007_s12561-022-09346-6

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561

DOI: 10.1007/s12561-022-09346-6

Access Statistics for this article

Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin

More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stabio:v:14:y:2022:i:3:d:10.1007_s12561-022-09346-6