Analysis of the Cox Model with Longitudinal Covariates with Measurement Errors and Partly Interval Censored Failure Times, with Application to an AIDS Clinical Trial
Yanqing Sun,
Qingning Zhou () and
Peter B. Gilbert
Additional contact information
Yanqing Sun: University of North Carolina at Charlotte
Qingning Zhou: University of North Carolina at Charlotte
Peter B. Gilbert: Fred Hutchinson Cancer Center
Statistics in Biosciences, 2023, vol. 15, issue 2, No 8, 430-454
Abstract:
Abstract Time-dependent covariates are often measured intermittently and with measurement errors. Motivated by the AIDS Clinical Trials Group (ACTG) 175 trial, this paper develops statistical inferences for the Cox model for partly interval censored failure times and longitudinal covariates with measurement errors. The conditional score methods developed for the Cox model with measurement errors and right censored data are no longer applicable to interval censored data. Assuming an additive measurement error model for a longitudinal covariate, we propose a nonparametric maximum likelihood estimation approach by deriving the measurement error induced hazard model that shows the attenuating effect of using the plug-in estimate for the true underlying longitudinal covariate. An EM algorithm is devised to facilitate maximum likelihood estimation that accounts for the partly interval censored failure times. The proposed methods can accommodate different numbers of replicates for different individuals and at different times. Simulation studies show that the proposed methods perform well with satisfactory finite-sample performances and that the naive methods ignoring measurement error or using the plug-in estimate can yield large biases. A hypothesis testing procedure for the measurement error model is proposed. The proposed methods are applied to the ACTG 175 trial to assess the associations of treatment arm and time-dependent CD4 cell count on the composite clinical endpoint of AIDS or death.
Keywords: AIDS clinical trial; Cox model; Longitudinal covariates; Measurement errors; Partly interval censored data (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12561-023-09372-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:15:y:2023:i:2:d:10.1007_s12561-023-09372-y
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-023-09372-y
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().