EconPapers    
Economics at your fingertips  
 

Detecting Shape-Based Interactions Among Environmental Chemicals Using an Ensemble of Exposure-Mixture Regression and Interpretable Machine Learning Tools

Vishal Midya () and Chris Gennings
Additional contact information
Vishal Midya: Icahn School of Medicine at Mount Sinai
Chris Gennings: Icahn School of Medicine at Mount Sinai

Statistics in Biosciences, 2024, vol. 16, issue 2, No 5, 395-415

Abstract: Abstract There is growing interest in discovering interactions between multiple environmental chemicals associated with increased adverse health effects. However, most existing approaches (1) either use a projection or product of multiple chemical exposures, which are difficult to interpret and (2) cannot simultaneously handle multi-ordered interactions. Therefore, we develop and validate a method to discover shape-based interactions that mimic usual toxicological interactions. We developed the Multi-ordered explanatory interaction (Moxie) algorithm by merging the efficacy of Extreme Gradient Boosting with the inferential power of Weighted Quantile Sum regression to extract synergistic interactions associated with the outcome/odds of disease in an adverse direction. We evaluated the algorithm’s performance through simulations and compared it with the currently available gold standard, the signed-iterative random forest algorithm. We used the 2017–18 US-NHANES dataset (n = 447 adults) to evaluate interactions among nine per- and poly-fluoroalkyl substances and five metals measured in whole blood in association with serum low-density lipoprotein cholesterol. In simulations, the Moxie algorithm was highly specific and sensitive and had very low false discovery rates in detecting true synergistic interactions of 2nd, 3rd, and 4th order through moderate (n = 250) to large (n = 1000) sample sizes. In NHANES data, we found a two-order synergistic interaction between cadmium and lead detected in people with whole-blood cadmium concentrations and lead above 0.605 ug/dL and 1.485 ug/dL, respectively. Our findings demonstrate a novel validated approach in environmental epidemiology for detecting shape-based toxicologically mimicking interactions by integrating exposure-mixture regression and machine learning methods.

Keywords: Exposure mixture models; Weighted quantile sum regression; Interactions; Machine learning; Extreme gradient boosting (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s12561-023-09405-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:16:y:2024:i:2:d:10.1007_s12561-023-09405-6

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561

DOI: 10.1007/s12561-023-09405-6

Access Statistics for this article

Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin

More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stabio:v:16:y:2024:i:2:d:10.1007_s12561-023-09405-6