Considerations and Targeted Approaches to Identifying Bad Actors in Exposure Mixtures
Alexander P. Keil () and
Katie M. O’Brien ()
Additional contact information
Alexander P. Keil: National Cancer Institute, NIH
Katie M. O’Brien: National Institute of Environmental Health Sciences, NIH
Statistics in Biosciences, 2024, vol. 16, issue 2, No 8, 459-481
Abstract:
Abstract Variable importance is a key statistical issue in exposure mixtures, as it allows a ranking of exposures as potential targets for intervention, and helps to identify bad actors within a mixture. In settings where mixtures have many constituents or high between-constituent correlations, estimators of importance can be subject to bias or high variance. Current approaches to assessing variable importance have major limitations, including reliance on overly strong or incorrect constraints or assumptions, excessive model extrapolation, or poor interpretability, especially regarding practical significance. We sought to overcome these limitations by applying an established doubly robust, machine learning-based approach to estimating variable importance in a mixtures context. This method reduces model extrapolation, appropriately controls confounding, and provides both interpretability and model flexibility. We illustrate its use with an evaluation of the relationship between telomere length, a measure of biologic aging, and exposure to a mixture of polychlorinated biphenyls (PCBs), dioxins, and furans among 979 US adults from the National Health and Nutrition Examination Survey (NHANES). In contrast with standard approaches for mixtures, our approach selected PCB 180 and PCB 194 as important contributors to telomere length. We hypothesize that this difference could be due to residual confounding in standard methods that rely on variable selection. Further empirical evaluation of this method is needed, but it is a promising tool in the search for bad actors within a mixture.
Keywords: Mixtures; Causal inference; Variable importance; Persistent organic pollutants (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12561-023-09409-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:16:y:2024:i:2:d:10.1007_s12561-023-09409-2
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-023-09409-2
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().