Causal Mediation Tree Model for Feature Identification on High-Dimensional Mediators
Yao Li () and
Wei Xu ()
Additional contact information
Yao Li: Dalla Lana School of Public Health, University of Toronto
Wei Xu: Dalla Lana School of Public Health, University of Toronto
Statistics in Biosciences, 2025, vol. 17, issue 1, No 8, 173 pages
Abstract:
Abstract High-dimensional mediation analysis plays an important role in recent biomedical research as a large number of mediators, such as microbiome, could modulate the effect of exposure to the outcome of interest. Most of the current studies focus on modelling independent mediators, but these methods do not consider the non-linear interactive effect between the mediators. Furthermore, it can be challenging to identify features with mediation effects from the high-dimensional mediator space. We proposed an innovative non-parametric approach to build causal mediation trees (CMT) to select important mediators and assess their non-linear interactive mediation effects on the outcome of the study. The data is recursively partitioned into subpopulations constructed by the mediators with the largest mediation effect. We aim to incorporate these non-linear interactions into the mediation framework using this approach and evaluate the total causal effect. Simulation studies were conducted to assess the performance of the CMT algorithm under different scenarios of interactive mediation effects. We applied the method to analyze vaginal microbiome sequencing data from the reproductive-age women’s study. We investigated the causal relationship between ethnic groups and the vaginal pH levels mediated by the vaginal microbiome. We identified three important microbial taxa with strong mediation effects and estimated the total effect of the mediation tree model.
Keywords: Mediation model; High-dimensional mediators; Recursive partition; Microbiome; Direct and indirect effect (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12561-023-09402-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:17:y:2025:i:1:d:10.1007_s12561-023-09402-9
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-023-09402-9
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().