EconPapers    
Economics at your fingertips  
 

Hypothesis Testing for an Exposure–Disease Association in Case–Control Studies Under Nondifferential Exposure Misclassification in the Presence of Validation Data: Bayesian and Frequentist Adjustments

Mohammad Ehsanul Karim () and Paul Gustafson
Additional contact information
Mohammad Ehsanul Karim: McGill University
Paul Gustafson: University of British Columbia

Statistics in Biosciences, 2016, vol. 8, issue 2, No 4, 234-252

Abstract: Abstract In epidemiologic studies, measurement error in the exposure variable can have a detrimental effect on the power of hypothesis testing for detecting the impact of exposure in the development of a disease. To adjust for misclassification in the hypothesis testing procedure involving a misclassified binary exposure variable, we consider a retrospective case–control scenario under the assumption of nondifferential misclassification. We develop a test under Bayesian approach from a posterior distribution generated by a MCMC algorithm and a normal prior under realistic assumptions. We compared this test with an equivalent likelihood ratio test developed under the frequentist approach, using various simulated settings and in the presence or the absence of validation data. In our simulations, we considered varying degrees of sensitivity, specificity, sample sizes, exposure prevalence, and proportion of unvalidated and validated data. In these scenarios, our simulation study shows that the adjusted model (with-validation data model) is always better than the unadjusted model (without validation data model). However, we showed that exception is possible in the fixed budget scenario where collection of the validation data requires a much higher cost. We also showed that both Bayesian and frequentist hypothesis testing procedures reach the same conclusions for the scenarios under consideration. The Bayesian approach is, however, computationally more stable in rare exposure contexts. A real case–control study was used to show the application of the hypothesis testing procedures under consideration.

Keywords: Bayesian methods; Case–control study; Exposure misclassification; Nondifferential assumption; Hypothesis testing; Validation data (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s12561-015-9141-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:8:y:2016:i:2:d:10.1007_s12561-015-9141-9

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561

DOI: 10.1007/s12561-015-9141-9

Access Statistics for this article

Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin

More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stabio:v:8:y:2016:i:2:d:10.1007_s12561-015-9141-9