Locally Weighted Score Estimation for Quantile Classification in Binary Regression Models
John D. Rice () and
Jeremy M. G. Taylor
Additional contact information
John D. Rice: University of Michigan
Jeremy M. G. Taylor: University of Michigan
Statistics in Biosciences, 2016, vol. 8, issue 2, No 9, 333-350
Abstract:
Abstract One common use of binary response regression methods is classification based on an arbitrary probability threshold dictated by the particular application. Since this is given to us a priori, it is sensible to incorporate the threshold into our estimation procedure. Specifically, for the linear logistic model, we solve a set of locally weighted score equations, using a kernel-like weight function centered at the threshold. The bandwidth for the weight function is selected by cross validation of a novel hybrid loss function that combines classification error and a continuous measure of divergence between observed and fitted values; other possible cross-validation functions based on more common binary classification metrics are also examined. This work has much in common with robust estimation, but differs from previous approaches in this area in its focus on prediction, specifically classification into high- and low-risk groups. Simulation results are given showing the reduction in error rates that can be obtained with this method when compared with maximum likelihood estimation, especially under certain forms of model misspecification. Analysis of a melanoma dataset is presented to illustrate the use of the method in practice.
Keywords: Binary classification; Local likelihood; Logistic regression; Asymmetric loss; Robust estimation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s12561-016-9147-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:8:y:2016:i:2:d:10.1007_s12561-016-9147-y
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-016-9147-y
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().