Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery
Xiaoquan Wen ()
Additional contact information
Xiaoquan Wen: University of Michigan
Statistics in Biosciences, 2017, vol. 9, issue 1, No 3, 28-49
Abstract:
Abstract Motivated by the genomic application of expression quantitative trait loci (eQTL) mapping, we propose a new procedure to perform simultaneous testing of multiple hypotheses using Bayes factors as input test statistics. One of the most significant features of this method is its robustness in controlling the targeted false discovery rate even under misspecifications of parametric alternative models. Moreover, the proposed procedure is highly computationally efficient, which is ideal for treating both complex system and big data in genomic applications. We discuss the theoretical properties of the new procedure and demonstrate its power and computational efficiency in applications of single-tissue and multi-tissue eQTL mapping.
Keywords: False Discovery Rate; Null Model; eQTL Mapping; False Discovery Rate Control; False Discovery Rate Level (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s12561-016-9153-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:9:y:2017:i:1:d:10.1007_s12561-016-9153-0
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-016-9153-0
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().