EconPapers    
Economics at your fingertips  
 

Establishing Informative Prior for Gene Expression Variance from Public Databases

Nan Li, Matthew N. McCall and Zhijin Wu ()
Additional contact information
Nan Li: Brown University
Matthew N. McCall: University of Rochester
Zhijin Wu: Brown University

Statistics in Biosciences, 2017, vol. 9, issue 1, No 9, 160-177

Abstract: Abstract Identifying differential expressed genes across various conditions or genotypes is the most typical approach to studying the regulation of gene expression. An estimate of gene-specific variance is often needed for the assessment of statistical significance in most differential expression (DE) detection methods, including linear models (e.g., for transformed and normalized microarray data) and generalized linear models (e.g., for count data in RNAseq). Due to a common limit in sample size, the variance estimate is often unstable in small experiments. Shrinkage estimates using empirical Bayes methods have proven useful in improving the variance estimate, hence improving the detection of DE. The most widely used empirical Bayes methods borrow information across genes within the same experiments. In these methods, genes are considered exchangeable or exchangeable conditioning on expression level. We propose, with the increasing accumulation of expression data, borrowing information from historical data on the same gene can provide better estimate of gene-specific variance, thus further improve DE detection. Specifically, we show that the variation of gene expression is truly gene-specific and reproducible between different experiments. We present a new method to establish informative gene-specific prior on the variance of expression using existing public data, and illustrate how to shrink the variance estimate and detect DE. We demonstrate improvement in DE detection under our strategy compared to leading DE detection methods.

Keywords: Differential expression; Empirical Bayes; Public database; Shrinkage variance estimate; Hierarchical model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s12561-016-9172-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:9:y:2017:i:1:d:10.1007_s12561-016-9172-x

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561

DOI: 10.1007/s12561-016-9172-x

Access Statistics for this article

Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin

More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stabio:v:9:y:2017:i:1:d:10.1007_s12561-016-9172-x