Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease
Liang Li (),
Sheng Luo,
Bo Hu and
Tom Greene
Additional contact information
Liang Li: University of Texas MD Anderson Cancer Center
Sheng Luo: University of Texas School of Public Health
Bo Hu: Cleveland Clinic
Tom Greene: University of Utah
Statistics in Biosciences, 2017, vol. 9, issue 2, No 4, 357-378
Abstract:
Abstract In longitudinal studies, prognostic biomarkers are often measured longitudinally. It is of both scientific and clinical interest to predict the risk of clinical events, such as disease progression or death, using these longitudinal biomarkers as well as other time-dependent and time-independent information about the patient. The prediction is dynamic in the sense that it can be made at any time during the follow-up, adapting to the changing at-risk population and incorporating the most recent longitudinal data. One approach is to build a joint model of longitudinal predictor variables and time to the clinical event, and draw predictions from the posterior distribution of the time to event conditional on longitudinal history. Another approach is to use the landmark model, which is a system of prediction models that evolve with the follow-up time. We review the pros and cons of the two approaches and present a general analytical framework using the landmark approach. The proposed framework allows the measurement times of longitudinal data to be irregularly spaced and differ between subjects. We propose a unified kernel weighting approach for estimating the model parameters, calculating the predicted probabilities, and evaluating the prediction accuracy through double time-dependent receiver operating characteristic curves. We illustrate the proposed analytical framework using the African American study of kidney disease and hypertension to develop a landmark model for dynamic prediction of end-stage renal diseases or death among patients with chronic kidney disease.
Keywords: Biomarker; Joint modeling of longitudinal and survival data; Landmark analysis; Prediction; Time-dependent ROC; Varying coefficient model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s12561-016-9183-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stabio:v:9:y:2017:i:2:d:10.1007_s12561-016-9183-7
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/12561
DOI: 10.1007/s12561-016-9183-7
Access Statistics for this article
Statistics in Biosciences is currently edited by Hongyu Zhao and Xihong Lin
More articles in Statistics in Biosciences from Springer, International Chinese Statistical Association
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().