EconPapers    
Economics at your fingertips  
 

Global and local statistical properties of fixed-length nonparametric smoothers

Estela Bee Dagum () and Alessandra Luati ()
Additional contact information
Estela Bee Dagum: University of Bologna
Alessandra Luati: University of Bologna

Statistical Methods & Applications, 2002, vol. 11, issue 3, No 4, 313-333

Abstract: Abstract The main purpose of this study is to analyze the global and local statistical properties of nonparametric smoothers subject to a priori fixed length restriction. In order to do so, we introduce a set of local statistical measures based on their weighting system shapes and weight values. In this way, the local statistical measures of bias, variance and mean square error are intrinsic to the smoothers and independent of the data to which they will be applied on. One major advantage of the statistical measures relative to the classical spectral ones is their easiness of calculation. However, in this paper we use both in a complementary manner. The smoothers studied are based on two broad classes of weighting generating functions, local polynomials and probability distributions. We consider within the first class, the locally weighted regression smoother (loess) of degree 1 and 2 (L1 and L2), the cubic smoothing spline (CSS), and the Henderson smoothing linear filter (H); and in the second class, the Gaussian kernel (GK). The weighting systems of these estimators depend on a smoothing parameter that traditionally, is estimated by means of data dependent optimization criteria. However, by imposing to all of them the condition of an equal number of weights, it will be shown that some of their optimal statistical properties are no longer valid. Without any loss of generality, the analysis is carried out for 13- and 9-term lengths because these are the most often selected for the Henderson filters in the context of monthly time series decomposition.

Keywords: Loess; Cubic Smoothing; Spline; Gaussian Kernel; Henderson smoothing filters; local statistical measures; gain and phase shift functions (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/BF02509830 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:11:y:2002:i:3:d:10.1007_bf02509830

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/BF02509830

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stmapp:v:11:y:2002:i:3:d:10.1007_bf02509830