EconPapers    
Economics at your fingertips  
 

Robust methods for the analysis of spatially autocorrelated data

Andrea Cerioli () and Marco Riani
Additional contact information
Andrea Cerioli: Università di Parma

Statistical Methods & Applications, 2002, vol. 11, issue 3, No 5, 335-358

Abstract: Abstract In this paper we propose a new robust technique for the analysis of spatial data through simultaneous autoregressive (SAR) models, which extends the Forward Search approach of Cerioli and Riani (1999) and Atkinson and Riani (2000). Our algorithm starts from a subset of outlier-free observations and then selects additional observations according to their degree of agreement with the postulated model. A number of useful diagnostics which are monitored along the search help to identify masked spatial outliers and high leverage sites. In contrast to other robust techniques, our method is particularly suited for the analysis of complex multidimensional systems since each step is performed through statistically and computationally efficient procedures, such as maximum likelihood. The main contribution of this paper is the development of joint robust estimation of both trend and autocorrelation parameters in spatial linear models. For this purpose we suggest a novel definition of the elemental sets of the Forward Search, which relies on blocks of contiguous spatial locations.

Keywords: Block forward search; Masking; SAR model; Spatial outliers (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://link.springer.com/10.1007/BF02509831 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:11:y:2002:i:3:d:10.1007_bf02509831

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/BF02509831

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stmapp:v:11:y:2002:i:3:d:10.1007_bf02509831