Estimating rating transition probabilites with missing data
Marco Bee
Statistical Methods & Applications, 2005, vol. 14, issue 1, No 9, 127-141
Abstract:
Abstract In this article we provide a rigorous treatment of one of the central statistical issues of credit risk management. GivenK-1 rating categories, the rating of a corporate bond over a certain horizon may either stay the same or change to one of the remainingK-2 categories; in addition, it is usually the case that the rating of some bonds is withdrawn during the time interval considered in the analysis. When estimating transition probabilities, we have thus to consider aK-th category, called withdrawal, which contains (partially) missing data. We show how maximum likelihood estimation can be performed in this setup; whereas in discrete time our solution gives rigorous support to a solution often used in applications, in continuous time the maximum likelihood estimator of the transition matrix computed by means of the EM algorithm represents a significant improvement over existing methods.
Keywords: Continuous-time Markov chain; Transition matrix; EM algorithm; Default probability (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/BF02511578 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:14:y:2005:i:1:d:10.1007_bf02511578
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/BF02511578
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().