On Multicollinearity and Concurvity in Some Nonlinear Multivariate Models
Isabella Morlini ()
Additional contact information
Isabella Morlini: Universitá di Modena e Reggio Emilia
Statistical Methods & Applications, 2006, vol. 15, issue 1, No 2, 3-26
Abstract:
Abstract Recent developments of multivariate smoothing methods provide a rich collection of feasible models for nonparametric multivariate data analysis. Among the most interpretable are those with smoothed additive terms. Construction of various methods and algorithms for computing the models have been the main concern in literature in this area. Less results are available on the validation of computed fit, instead, and many applications of nonparametric methods end up in computing and comparing the generalized validation error or related indexes. This article reviews the behaviour of some of the best known multivariate nonparametric methods, based on subset selection and on projection, when (exact) collinearity or multicollinearity (near collinearity) is present in the input matrix. It shows the possible aliasing effects in computed fits of some selection methods and explores the properties of the projection spaces reached by projection methods in order to help data analysts to select the best model in case of ill conditioned input matrices. Two simulation studies and a real data set application are presented to illustrate further the effects of collinearity or multicollinearity in the fit.
Keywords: Additive models; CART; Collinearity; MARS; Multi-layer perceptron; Projection pursuit regression (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10260-006-0005-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:15:y:2006:i:1:d:10.1007_s10260-006-0005-9
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-006-0005-9
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().