EconPapers    
Economics at your fingertips  
 

An omnibus lack of fit test in logistic regression with sparse data

Ying Liu (), Paul Nelson and Shie-Shien Yang

Statistical Methods & Applications, 2012, vol. 21, issue 4, 437-452

Abstract: The usefulness of logistic regression depends to a great extent on the correct specification of the relation between a binary response and characteristics of the unit on which the response is recoded. Currently used methods for testing for misspecification (lack of fit) of a proposed logistic regression model do not perform well when a data set contains almost as many distinct covariate vectors as experimental units, a condition referred to as sparsity. A new algorithm for grouping sparse data to create pseudo replicates and using them to test for lack of fit is developed. A simulation study illustrates settings in which the new test is superior to existing ones. Analysis of a dataset consisting of the ages of menarche of Warsaw girls is also used to compare the new and existing lack of fit tests. Copyright Springer-Verlag 2012

Keywords: Model building; Binary response; Pseudo replicates; Type I error; Power (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1007/s10260-012-0197-0 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:21:y:2012:i:4:p:437-452

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/s10260-012-0197-0

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stmapp:v:21:y:2012:i:4:p:437-452