Nonparametric estimation of nonlinear dynamics by metric-based local linear approximation
Isao Shoji ()
Statistical Methods & Applications, 2013, vol. 22, issue 3, 353 pages
Abstract:
This paper discusses nonparametric estimation of nonlinear dynamical system models by a method of metric-based local linear approximation. We assume no functional form of a given model but estimate it from experimental data by approximating the curve implied by the function by the tangent plane around the neighborhood of a tangent point. To specify an appropriate neighborhood, we prepare a metric defined over the Euclidean space in which the curve exists and then evaluate the closeness to the tangent point according to the distances. The proposed method differs from the first order polynomial modeling in discerning the metric and the weighting function, but the first order polynomial modeling with Gaussian kernels is shown to be a special version of the proposed method. Simulation studies and application to ECG signals show the proposed method is easy to manipulate and has performance comparable to or better than the first order local polynomial modeling. Copyright Springer-Verlag Berlin Heidelberg 2013
Keywords: Electrocardiogram; Local linear approximation; Nonlinear dynamical system; Nonparametric estimation; Random oscillation (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10260-012-0226-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:22:y:2013:i:3:p:341-353
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-012-0226-z
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().