Bayesian hierarchical statistical SIRS models
Lili Zhuang () and
Noel Cressie ()
Statistical Methods & Applications, 2014, vol. 23, issue 4, 646 pages
Abstract:
The classic susceptible-infectious-recovered (SIR) model, has been used extensively to study the dynamical evolution of an infectious disease in a large population. The SIR-susceptible (SIRS) model is an extension of the SIR model to allow modeling imperfect immunity (those who have recovered might become susceptible again). SIR(S) models assume observed counts are “mass balanced.” Here, mass balance means that total count equals the sum of counts of the individual components of the model. However, since the observed counts have errors, we propose a model that assigns the mass balance to the hidden process of a (Bayesian) hierarchical SIRS (HSIRS) model. Another challenge is to capture the stochastic or random nature of an epidemic process in a SIRS. The HSIRS model accomplishes this through modeling the dynamical evolution on a transformed scale. Through simulation, we compare the HSIRS model to the classic SIRS model, a model where it is assumed that the observed counts are mass balanced and the dynamical evolution is deterministic. Copyright Springer-Verlag Berlin Heidelberg 2014
Keywords: Mass balance; Disease dynamics; Epidemic model; Influenza; HSIRS (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10260-014-0280-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:23:y:2014:i:4:p:601-646
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-014-0280-9
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().