Divergence based robust estimation of the tail index through an exponential regression model
Abhik Ghosh ()
Additional contact information
Abhik Ghosh: Indian Statistical Institute
Statistical Methods & Applications, 2017, vol. 26, issue 2, No 1, 213 pages
Abstract:
Abstract The extreme value theory is very popular in applied sciences including finance, economics, hydrology and many other disciplines. In univariate extreme value theory, we model the data by a suitable distribution from the general max-domain of attraction characterized by its tail index; there are three broad classes of tails—the Pareto type, the Weibull type and the Gumbel type. The simplest and most common estimator of the tail index is the Hill estimator that works only for Pareto type tails and has a high bias; it is also highly non-robust in presence of outliers with respect to the assumed model. There have been some recent attempts to produce asymptotically unbiased or robust alternative to the Hill estimator; however all the robust alternatives work for any one type of tail. This paper proposes a new general estimator of the tail index that is both robust and has smaller bias under all the three tail types compared to the existing robust estimators. This essentially produces a robust generalization of the estimator proposed by Matthys and Beirlant (Stat Sin 13:853–880, 2003) under the same model approximation through a suitable exponential regression framework using the density power divergence. The robustness properties of the estimator are derived in the paper along with an extensive simulation study. A method for bias correction is also proposed with application to some real data examples.
Keywords: Extreme value theory; Robust methods; Exponential regression model; Density power divergence (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s10260-016-0364-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:26:y:2017:i:2:d:10.1007_s10260-016-0364-9
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-016-0364-9
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().