Term structure forecasting in affine framework with time-varying volatility
Wali Ullah ()
Additional contact information
Wali Ullah: Institute of Business Administration (IBA)
Statistical Methods & Applications, 2017, vol. 26, issue 3, No 7, 453-483
Abstract:
Abstract This study extends the affine Nelson–Siegel model by introducing the time-varying volatility component in the observation equation of yield curve, modeled as a standard EGARCH process. The model is illustrated in state-space framework and empirically compared to the standard affine and dynamic Nelson–Siegel model in terms of in-sample fit and out-of-sample forecast accuracy. The affine based extended model that accounts for time-varying volatility outpaces the other models for fitting the yield curve and produces relatively more accurate 6- and 12-month ahead forecasts, while the standard affine model comes with more precise forecasts for the very short forecast horizons. The study concludes that the standard and affine Nelson–Siegel models have higher forecasting capability than their counterpart EGARCH based models for the short forecast horizons, i.e., 1 month. The EGARCH based extended models have excellent performance for the medium and longer forecast horizons.
Keywords: Latent factors model; State-space model; Kalman filter; EGARCH; Forecasting; Bond market (search for similar items in EconPapers)
JEL-codes: C32 C51 C53 E43 G12 G17 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10260-017-0378-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:26:y:2017:i:3:d:10.1007_s10260-017-0378-y
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-017-0378-y
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().