Testing for sub-models of the skew t-distribution
Thomas J. DiCiccio () and
Anna Clara Monti ()
Additional contact information
Thomas J. DiCiccio: Cornell University
Anna Clara Monti: University of Sannio
Statistical Methods & Applications, 2018, vol. 27, issue 1, No 2, 25-44
Abstract:
Abstract The skew t-distribution includes both the skew normal and the normal distributions as special cases. Inference for the skew t-model becomes problematic in these cases because the expected information matrix is singular and the parameter corresponding to the degrees of freedom takes a value at the boundary of its parameter space. In particular, the distributions of the likelihood ratio statistics for testing the null hypotheses of skew normality and normality are not asymptotically $$\chi ^2$$ χ 2 . The asymptotic distributions of the likelihood ratio statistics are considered by applying the results of Self and Liang (J Am Stat Assoc 82:605–610, 1987) for boundary-parameter inference in terms of reparameterizations designed to remove the singularity of the information matrix. The Self–Liang asymptotic distributions are mixtures, and it is shown that their accuracy can be improved substantially by correcting the mixing probabilities. Furthermore, although the asymptotic distributions are non-standard, versions of Bartlett correction are developed that afford additional accuracy. Bootstrap procedures for estimating the mixing probabilities and the Bartlett adjustment factors are shown to produce excellent approximations, even for small sample sizes.
Keywords: Asymptotic distribution; Bartlett correction; Boundary-value parameter; Flexible parametric model; Likelihood inference; Non-standard asymptotics; Normality test; Skew normal distribution; Skew t-distribution; Singular information matrix (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10260-017-0387-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:27:y:2018:i:1:d:10.1007_s10260-017-0387-x
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-017-0387-x
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().