Most stable sample size determination in clinical trials
Ali Karimnezhad () and
Ahmad Parsian ()
Additional contact information
Ali Karimnezhad: K. N. Toosi University of Technology
Ahmad Parsian: University of Tehran
Statistical Methods & Applications, 2018, vol. 27, issue 3, No 4, 437-454
Abstract:
Abstract This paper is devoted to robust Bayes sample size determination under the quadratic loss function. The idea behind the proposed approach is that the smaller a chosen posterior functional, the more robust the posterior inference. Such desired posterior functional has been taken, in the literature, as the range of posterior mean over a class of priors but we show that dealing with the posterior mean is not the only method leading to an optimal sample size. To provide an alternative approach, we propose implementing most stable rules into the context of sample size determination. We discuss properties of the desired most stable estimate and provide some examples in the normal model. We then compare the proposed approach with that of a recent global robustness study from both numerical and theoretical aspects. We illustrate the practical utility of our proposed method by analyzing a real data set.
Keywords: Bayesian robustness; Normal model; Prior uncertainty; Posterior function; Sensitivity analysis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10260-017-0419-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:27:y:2018:i:3:d:10.1007_s10260-017-0419-6
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-017-0419-6
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().