Nonparametric series density estimation and testing
Patrick Marsh ()
Statistical Methods & Applications, 2019, vol. 28, issue 1, No 4, 77-99
Abstract:
Abstract This paper first establishes consistency of the exponential series density estimator when nuisance parameters are estimated as a preliminary step. Convergence in relative entropy of the density estimator is preserved, which in turn implies that the quantiles of the population density can be consistently estimated. The density estimator can then be employed to provide a test for the specification of fitted density functions. Commonly, this testing problem has utilized statistics based upon the empirical distribution function, such as the Kolmogorov-Smirnov or Cramér von-Mises, type. However, the tests of this paper are shown to be asymptotically pivotal having limiting standard normal distribution, unlike those based on the edf. For comparative purposes with those tests, the numerical properties of both the density estimator and test are explored in a series of experiments. Some general superiority over commonly used edf based tests is evident, whether standard or bootstrap critical values are used.
Keywords: Goodness-of-fit; Nonparametric likelihood ratio; Nuisance parameters and series density estimator; 62G07; 62G10; 62E10 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10260-018-00432-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:28:y:2019:i:1:d:10.1007_s10260-018-00432-y
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-018-00432-y
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().