Backtesting VaR and expectiles with realized scores
Fabio Bellini (),
Ilia Negri () and
Mariya Pyatkova ()
Additional contact information
Fabio Bellini: University of Milano-Bicocca
Ilia Negri: University of Bergamo
Mariya Pyatkova: University of Milano-Bicocca
Statistical Methods & Applications, 2019, vol. 28, issue 1, No 7, 119-142
Abstract:
Abstract Several statistical functionals such as quantiles and expectiles arise naturally as the minimizers of the expected value of a scoring function, a property that is called elicitability (see Gneiting in J Am Stat Assoc 106:746–762, 2011 and the references therein). The existence of such scoring functions gives a natural way to compare the accuracy of different forecasting models, and to test comparative hypotheses by means of the Diebold–Mariano test as suggested in a recent work. In this paper we suggest a procedure to test the accuracy of a quantile or expectile forecasting model in an absolute sense, as in the original Basel I backtesting procedure of value-at-risk. To this aim, we study the asymptotic and finite-sample distributions of empirical scores for normal and uniform i.i.d. samples. We compare on simulated data the empirical power of our procedure with alternative procedures based on empirical identification functions (i.e. in the case of VaR the number of violations) and we find an higher power in detecting at least misspecification in the mean. We conclude with a real data example where both backtesting procedures are applied to AR(1)–Garch(1,1) models fitted to SP500 logreturns for VaR and expectiles’ forecasts.
Keywords: Backtesting; Forecasting; Value at risk; Expectiles (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s10260-018-00434-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:28:y:2019:i:1:d:10.1007_s10260-018-00434-w
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-018-00434-w
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().