EconPapers    
Economics at your fingertips  
 

Modeling of the ARMA random effects covariance matrix in logistic random effects models

Keunbaik Lee (), Hoimin Jung () and Jae Keun Yoo ()
Additional contact information
Keunbaik Lee: Sungkyunkwan University
Hoimin Jung: Korea Land & Housing Institute
Jae Keun Yoo: Ewha Womans University

Statistical Methods & Applications, 2019, vol. 28, issue 2, No 5, 299 pages

Abstract: Abstract Logistic random effects models (LREMs) have been frequently used to analyze longitudinal binary data. When a random effects covariance matrix is used to make proper inferences on covariate effects, the random effects in the models account for both within-subject association and between-subject variation, but the covariance matix is difficult to estimate because it is high-dimensional and should be positive definite. To overcome these limitations, two Cholesky decomposition approaches were proposed for precision matrix and covariance matrix: modified Cholesky decomposition and moving average Cholesky decomposition, respectively. However, the two approaches may not work when there are non-trivial and complicated correlations of repeated outcomes. In this paper, we combined the two decomposition approaches to model the random effects covariance matrix in the LREMs, thereby capturing a wider class of sophisticated dependence structures while achieving parsimony in parametrization. We then used our proposed model to analyze lung cancer data.

Keywords: Cholesky decomposition; Longitudinal data; Heteroscedastic; Repeated outcomes (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10260-018-00440-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:28:y:2019:i:2:d:10.1007_s10260-018-00440-y

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2

DOI: 10.1007/s10260-018-00440-y

Access Statistics for this article

Statistical Methods & Applications is currently edited by Tommaso Proietti

More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:stmapp:v:28:y:2019:i:2:d:10.1007_s10260-018-00440-y