Bayesian variable selection in linear regression models with non-normal errors
Saverio Ranciati (),
Giuliano Galimberti () and
Gabriele Soffritti ()
Additional contact information
Giuliano Galimberti: University of Bologna
Gabriele Soffritti: University of Bologna
Statistical Methods & Applications, 2019, vol. 28, issue 2, No 7, 323-358
Abstract:
Abstract This paper addresses two crucial issues in multiple linear regression analysis: (i) error terms whose distribution is non-normal because of the presence of asymmetry of the response variable and/or data coming from heterogeneous populations; (ii) selection of the regressors that effectively contribute to explaining patterns in the observations and are relevant for predicting the dependent variable. A solution to the first issue can be obtained through an approach in which the distribution of the error terms is modelled using a finite mixture of Gaussian distributions. In this paper we use this approach to specify a Bayesian linear regression model with non-normal errors; furthermore, by embedding Bayesian variable selection techniques in the specification of the model, we simultaneously perform estimation and variable selection. These tasks are accomplished by sampling from the posterior distributions associated with the model. The performances of the proposed methodology are evaluated through the analysis of simulated datasets in comparison with other approaches. The results of an analysis based on a real dataset are also provided. The methods developed in this paper result to perform well when the distribution of the error terms is characterised by heavy tails, skewness and/or multimodality.
Keywords: Gaussian mixture model; G-prior; MCMC algorithm; Median probability criterion (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s10260-018-00441-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:28:y:2019:i:2:d:10.1007_s10260-018-00441-x
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-018-00441-x
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().