Statistical and probabilistic analysis of interarrival and waiting times of Internet2 anomalies
Piotr Kokoszka (),
Hieu Nguyen,
Haonan Wang and
Liuqing Yang
Additional contact information
Piotr Kokoszka: Colorado State University
Hieu Nguyen: Colorado State University
Haonan Wang: Colorado State University
Liuqing Yang: Colorado State University
Statistical Methods & Applications, 2020, vol. 29, issue 4, No 3, 727-744
Abstract:
Abstract Motivated by the need to introduce design improvements to the Internet network to make it robust to high traffic volume anomalies, we analyze statistical properties of the time separation between arrivals of consecutive anomalies in the Internet2 network. Using several statistical techniques, we demonstrate that for all unidirectional links in Internet2, these interarrival times have distributions whose tail probabilities decay like a power law. These heavy-tailed distributions have varying tail indexes, which in some cases imply infinite variance. We establish that the interarrival times can be modeled as independent and identically distributed random variables, and propose a model for their distribution. These findings allow us to use the tools of of renewal theory, which in turn allows us to estimate the distribution of the waiting time for the arrival of the next anomaly. We show that the waiting time is stochastically substantially longer than the time between the arrivals, and may in some cases have infinite expected value. All our findings are tabulated and displayed in the form of suitable graphs, including the relevant density estimates.
Keywords: Heavy-tailed distributions; Interarrival times; Internet anomalies; Renewal theory (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10260-019-00500-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:29:y:2020:i:4:d:10.1007_s10260-019-00500-x
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-019-00500-x
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().