PC priors for residual correlation parameters in one-factor mixed models
Massimo Ventrucci (),
Daniela Cocchi (),
Gemma Burgazzi () and
Alex Laini ()
Additional contact information
Daniela Cocchi: University of Bologna
Gemma Burgazzi: University of Parma
Alex Laini: University of Parma
Statistical Methods & Applications, 2020, vol. 29, issue 4, No 4, 745-765
Abstract:
Abstract Lack of independence in the residuals from linear regression motivates the use of random effect models in many applied fields. We start from the one-way anova model and extend it to a general class of one-factor Bayesian mixed models, discussing several correlation structures for the within group residuals. All the considered group models are parametrized in terms of a single correlation (hyper-)parameter, controlling the shrinkage towards the case of independent residuals (iid). We derive a penalized complexity (PC) prior for the correlation parameter of a generic group model. This prior has desirable properties from a practical point of view: (i) it ensures appropriate shrinkage to the iid case; (ii) it depends on a scaling parameter whose choice only requires a prior guess on the proportion of total variance explained by the grouping factor; (iii) it is defined on a distance scale common to all group models, thus the scaling parameter can be chosen in the same manner regardless the adopted group model. We show the benefit of using these PC priors in a case study in community ecology where different group models are compared.
Keywords: Bayesian mixed models; Group model; One-way anova; INLA; Intra-class correlation; Within group residuals (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10260-019-00501-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:29:y:2020:i:4:d:10.1007_s10260-019-00501-w
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-019-00501-w
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().