Regression for compositions based on a generalization of the Dirichlet distribution
Monique Graf ()
Additional contact information
Monique Graf: Université de Neuchâtel
Statistical Methods & Applications, 2020, vol. 29, issue 4, No 11, 913-936
Abstract:
Abstract The simplex is the geometrical locus of D-dimensional positive data with constant sum, called compositions. A possible distribution for compositions is the Dirichlet. In Dirichlet models, there are no scale parameters and the D shapes are assumed dependent on auxiliary variables. This peculiar feature makes Dirichlet models difficult to apply and to interpret. Here, we propose a generalization of the Dirichlet, called the simplicial generalized Beta (SGB) distribution. It includes an overall shape parameter, a scale composition and the D Dirichlet shapes. The SGB is flexible enough to accommodate many practical situations. SGB regression models are applied to data from the United Kingdom Time Use Survey. The R-package SGB makes the methods accessible to users.
Keywords: Compositions; Simplicial generalized Beta distribution; Maximum likelihood estimation; Imputation; Multiple regression; 62E15; 62F10 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10260-020-00512-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:stmapp:v:29:y:2020:i:4:d:10.1007_s10260-020-00512-y
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/10260/PS2
DOI: 10.1007/s10260-020-00512-y
Access Statistics for this article
Statistical Methods & Applications is currently edited by Tommaso Proietti
More articles in Statistical Methods & Applications from Springer, Società Italiana di Statistica
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().